谷歌浏览器插件
订阅小程序
在清言上使用

LM-GVP: an Extensible Sequence and Structure Informed Deep Learning Framework for Protein Property Prediction

Scientific reports(2022)

引用 27|浏览25
暂无评分
摘要
Proteins perform many essential functions in biological systems and can be successfully developed as bio-therapeutics. It is invaluable to be able to predict their properties based on a proposed sequence and structure. In this study, we developed a novel generalizable deep learning framework, LM-GVP, composed of a protein Language Model (LM) and Graph Neural Network (GNN) to leverage information from both 1D amino acid sequences and 3D structures of proteins. Our approach outperformed the state-of-the-art protein LMs on a variety of property prediction tasks including fluorescence, protease stability, and protein functions from Gene Ontology (GO). We also illustrated insights into how a GNN prediction head can inform the fine-tuning of protein LMs to better leverage structural information. We envision that our deep learning framework will be generalizable to many protein property prediction problems to greatly accelerate protein engineering and drug development.
更多
查看译文
关键词
Machine learning,Protein function predictions,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要