谷歌浏览器插件
订阅小程序
在清言上使用

Odorant Inhibition in Mosquito Olfaction Mediated by Inverse Agonists

Biochemical and biophysical research communications(2022)

引用 1|浏览9
暂无评分
摘要
The insect repellent methyl salicylate elicits excitatory responses upon interaction with CquiOR32, an odorant receptor (OR) from the southern house mosquito, Culex quinquefasciatus. By contrast, eucalyptol binds to CquiOR32 to generate electrophysiological and behavioral inhibitory responses. In an attempt to identify CquiOR32 variants displaying more robust inhibitory responses for more accurate current-voltage analysis, we sequenced 31 CquiOR32 clones. In the Xenopus oocyte recording system, CquiOR32V2/CquiOrco-expressing oocytes yielded eucalyptol-elicited outward (inhibitory) currents relatively larger than methyl salicylate-generated inward (excitatory) currents. Rescuing experiments showed that two of the amino acid substitutions in CquiOR32V2 located in a predicted transmembrane helix of the receptor are determinants of the outward/inward ratios. These findings, along with co-stimulus assays, suggest that odorant and inhibitor may bind to the same binding pocket. Current-voltage relationships obtained with standard perfusion buffer and those devoid of Na+ or Cl− indicated that both excitatory and inhibitory currents are mediated, at least in part, by cation. We then concluded that eucalyptol is an inverse agonist, which shifts the open ⇔ closed equilibrium of the receptor toward the closed conformation, thus reducing the spontaneous activity. By contrast, the binding of methyl salicylate shifts the equilibrium towards the open conformation and, consequently, leads to an increase in cation influx.
更多
查看译文
关键词
Culex quinquefasciatus,CquiOR32,Binding pocket,Methyl salicylate,Eucalyptol,I-V curves
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要