Incorporating Information from LIGO Data Quality Streams into the PyCBC Search for Gravitational Waves
Physical review D/Physical review D(2022)
CALTECH | Univ Maryland | Univ Portsmouth
Abstract
We present a new method which accounts for changes in the properties of gravitational-wave detector noise over time in the PyCBC search for gravitational waves from compact binary coalescences. We use information from LIGO data quality streams that monitor the status of each detector and its environment to model changes in the rate of noise in each detector. These data quality streams allow candidates identified in the data during periods of detector malfunctions to be more efficiently rejected as noise. This method allows data from machine learning predictions of the detector state to be included as part of the PyCBC search, increasing the total number of detectable gravitational-wave signals by up to 5%. When both machine learning classifications and manually generated flags are used to search data from LIGO-Virgo's third observing run, the total number of detectable gravitational-wave signals is increased by up to 20% compared to not using any data quality streams. We also show how this method is flexible enough to include information from large numbers of additional arbitrary data streams that may be able to further increase the sensitivity of the search.
MoreTranslated text
Key words
Pulsar Timing,LIGO and Virgo
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
First Gravitational-Wave Search for Intermediate-Mass Black Hole Mergers with Higher-Order Harmonics
Physical review D/Physical review D 2022
被引用4
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话