谷歌浏览器插件
订阅小程序
在清言上使用

Quantitative Analysis of Raman Spectra for Glucose Concentration in Human Blood Using Gramian Angular Field and Convolutional Neural Network

Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy(2022)

引用 11|浏览22
暂无评分
摘要
In this study, convolutional neural network based on Gramian angular field (GAF-CNN) was firstly proposed. The 1-D Raman spectral data was converted into images and used for predicting the biochemical value of blood glucose. 106 sets of blood spectrums were acquired by Fourier transform (FT) Raman spectroscopy. Spectral data ranging from 800 cm(-1) to 1800 cm(-1) were selected for quantitative analysis of the blood glucose. Data augmentation was used to train neural networks and normalize the Raman spectra. And, we applied principal component analysis (PCA) for dimension reduction and information extraction. The root mean squared error of prediction (RMSEP) are 0.06570 (GADF) and 0.06774 (GASF), the determination coefficient of prediction (R-2) are 0.99929 (GADF) and 0.99925 (GASF), and the residual predictive deviation of prediction (RPD) are 37.56324 (GADF) and 36.43362 (GASF). GAF-CNN model performed better for predicting of glucose concentration. The GAF-CNN model can be used to establish a calibration model to predict blood glucose concentration. (C) 2022 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Gramian Angular Field (GAF),Convolutional neural network (CNN),Raman spectroscopy,Blood glucose
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要