谷歌浏览器插件
订阅小程序
在清言上使用

Bioinspired Rotation Microneedles for Accurate Transdermal Positioning and Ultraminimal-Invasive Biomarker Detection with Mechanical Robustness.

Research(2022)

引用 7|浏览9
暂无评分
摘要
Microneedle permits transdermal biosensing and drug delivery with minor pain. However, accurate microneedle transdermal positioning with minimal skin deformation remains a significant technical challenge due to inhomogeneous skin topology and discontinuous force applied to the microneedle. Here, we introduce bioinspired rotation microneedles for in vivo accurate microneedle positioning as inspired by honeybees' stingers. We demonstrate the benefits of rotation microneedles in alleviating skin resistance through finite element analysis, full-thickness porcine validations, and mathematical derivations of microneedle-skin interaction stress fields. The max penetration force was mitigated by up to 45.7% and the force attenuation rate increased to 2.73 times in the holding stage after penetration. A decrease in max skin deflection and a faster deformation recovery introduced by rotation microneedles implied a more precise penetration depth. Furthermore, we applied the rotation microneedles in psoriasis mice, a monogenic disorder animal model, for minimally invasive biological sample extraction and proinflammatory cytokine monitoring. An ultrasensitive detection method is realized by using only one microneedle to achieve cytokine mRNA level determination compared to commonly required biopsies or blood collection. Thus, rotation microneedles permit a simple, rapid, and ultraminimal-invasive method for subcutaneous trace biological sample acquisition and subsequent point-of-care diagnostics with minimal damage to both microneedles and skins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要