谷歌浏览器插件
订阅小程序
在清言上使用

A Model for How Gβγ Couples Gα to GPCR.

The Journal of General Physiology(2022)

引用 4|浏览0
暂无评分
摘要
Representing ∼5% of the human genome, G-protein-coupled receptors (GPCRs) are a primary target for drug discovery; however, the molecular details of how they couple to heterotrimeric G protein subunits are incompletely understood. Here, I propose a hypothetical initial docking model for the encounter between GPCR and Gβγ that is defined by transient interactions between the cytosolic surface of the GPCR and the prenyl moiety and the tripeptide motif, asparagine-proline-phenylalanine (NPF), in the C-terminus of the Gγ subunit. Analysis of class A GPCRs reveals a conserved NPF binding site formed by the interaction of the TM1 and H8. Functional studies using differentially prenylated proteins and peptides further suggest that the intracellular hydrophobic core of the GPCR is a prenyl binding site. Upon binding TM1 and H8 of GPCRs, the propensity of the C-terminal region of Gγ to convert into an α helix allows it to extend into the hydrophobic core of the GPCR, facilitating the GPCR active state. Conservation of the NPF motif in Gγ isoforms and interacting residues in TM1 and H8 suggest that this is a general mechanism of GPCR-G protein signaling. Analysis of the rhodopsin dimer also suggests that Gγ-rhodopsin interactions may facilitate GPCR dimer transactivation.
更多
查看译文
关键词
G Protein-Coupled Receptors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要