PERTUSSIS - RE-EMERGIGNG DISEASE
Profese online(2021)
Abstract
VĂ˝chodiska: OÄkovĂĄnĂ proti pertusi v ÄeskĂŠ republice (ÄR) bylo zahĂĄjeno na konci roku 1958. ProoÄkovanost se dlouhodobÄ udrĹžovala na velmi dobrĂŠ Ăşrovni a hlĂĄĹĄeno bylo pouze nÄkolik pĹĂpadĹŻ roÄnÄ. PĹesto je v ÄR od 90. let minulĂŠho stoletĂ pertuse na vzestupu (re-emerging disease) podobnÄ jako v jinĂ˝ch zemĂch. CĂl: SeznĂĄmit s aktuĂĄlnĂ epidemiologickou situacĂ a faktory, kterĂŠ ji ovlivĹujĂ. Metodika: PĹehled shrnujĂcĂ publikovanĂŠ studie a ÄlĂĄnky k danĂŠ problematice. VĂ˝sledky: Nemocnost pertusĂ stoupĂĄ v zemĂch nejen ve stĂĄtech, kde se oÄkuje acelulĂĄrnĂ pertusovou vakcĂnou, ale i tam, kde se pouĹžĂvĂĄ celobunÄÄnĂĄ pertusovĂĄ vakcĂna. ZejmĂŠna v oblastech s dobrou prooÄkovanostĂ je pozorovĂĄna zmÄna ve vÄkovĂŠ distribuci onemocnÄnĂ se shiftem do skupiny adolescentĹŻ a dospÄlĂ˝ch. Pertuse je vĂ˝znamnou pĹĂÄinou nemocnosti a Ăşmrtnosti u nejmenĹĄĂch dÄtĂ. AcelulĂĄrnĂ vakcĂny jsou povaĹžovĂĄny za bezpeÄnĂŠ, ale pĹibĂ˝vĂĄ dĹŻkazĹŻ, Ĺže acelulĂĄrnĂ vakcĂny nejsou schopny onemocnÄnĂ pertusĂ dostateÄnÄ kontrolovat. ZĂĄvÄry: Pertusi lze pĹedchĂĄzet oÄkovĂĄnĂm. PĹes vysokou prooÄkovanost je pertuse povaĹžovĂĄna za znovu se objevujĂcĂ onemocnÄnĂ. Je nutnĂŠ zlepĹĄit vĹĄechny prvky surveillance vÄetnÄ ÄasnĂŠ a sprĂĄvnĂŠ diagnostiky. Je dĹŻleĹžitĂŠ zavĂŠst opatĹenĂ, kterĂĄ snĂŞà pĹenos pertuse na nejmenĹĄĂ dÄti. Vzhledem k nĂĄrĹŻstu pertuse v ÄR je zejmĂŠna v populaci ve zvýťenĂŠm riziku onemocnÄnĂ nezbytnĂŠ udrĹžet i nadĂĄle co nejvyĹĄĹĄĂ prooÄkovanost.
MoreTranslated text
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2005
被引用82 | 浏览
2011
被引用21 | 浏览
2012
被引用102 | 浏览
2012
被引用137 | 浏览
2012
被引用219 | 浏览
2009
被引用148 | 浏览
2009
被引用289 | 浏览
2013
被引用60 | 浏览
2005
被引用106 | 浏览
2014
被引用161 | 浏览
2016
被引用35 | 浏览
2016
被引用38 | 浏览
2011
被引用120 | 浏览
2019
被引用68 | 浏览
2019
被引用49 | 浏览
2020
被引用24 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话