The evolution of oxygen-functional groups of graphene oxide as a function of oxidation degree

Materials Chemistry and Physics(2022)

引用 15|浏览7
暂无评分
摘要
Tuning the ratio of sp2/sp3 is crucial factor for obtaining high aspect ratio of graphene oxide. In this work, we reported a comprehensive study on synthesis of GO with different sp2/sp3 ratios at different oxidation reaction temperatures. The physicochemical properties of the as-prepared GO were characterized by Attenuated total reflectance infrared spectroscopy (ATR-IR), Raman spectroscopy, Solid-state nuclear magnetic resonance (SSNMR), Field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Transmission electron microscope (TEM), hydrophilicity test and zeta potential. Interestingly, GO-35 showed the smallest contact angle with carbon-to-oxygen (O/C) ratio 0.469. ATR-IR reveals the different intensity of hydroxyl (−OH), carbonyl (−CO), epoxy (C–O–C), as well as carboxyl (−COOH) moieties in the GO samples, and their intermolecular interactions significantly affected the interlayer spacing between consecutive identical planes of carbon atoms which examined using XRD. XPS confirmed that the basal species such as –OH is abundantly available in the GO-35 and unavailable in GO-50. Our results demonstrate that the properties of GO can be tuned using different oxidation reaction temperatures, which significantly influences types of oxygen-functional groups generated at different oxidation levels, thus could pave the way for various applications of graphene-based material.
更多
查看译文
关键词
Graphene,Graphene oxide,The degree of oxidation,Oxidation temperature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要