Evaluation of surface damage resistance in several polished conditions for SrB4O7 crystal

Laser-Induced Damage in Optical Materials 2021(2021)

引用 0|浏览1
暂无评分
摘要
The developments of ultra-high purity material which resist the damage by DUV laser are strongly required. According to the general mechanism of laser-induced damage, some kinds of defects and contaminations on the optical material are very important factors for DUV laser-induced damage. The borate crystal SrB4O7 (SBO) was reported to be a nonlinear optical material with a wide transparency down to 130 nm. In this study, we grew a high-quality SBO single crystal and measured the surface DUV laser-induced damage threshold (LIDT) in several polished conditions. The SBO crystals grown over 13 days was 60 x 6 x 30 mm3 (a x b x c) without cracks or other defects. Two (020) plates were cut from the SBO crystal, and the both faces of the plates were optically polished. After that, we introduced catalyst-referred etching (CARE) to the one plate in order to atomically produce flat and damage-free SBO surfaces. As a result of the CARE treatment at a removal rate of 364 nm/h, the surface condition changed drastically, and a linear step-and-terrace structure was grew with a step height of 0.2 nm. The surface LIDT in several polished conditions were measured with a 1-on-1 method at 266 nm (5 ns pulse width). The polarization direction was parallel to the c-axis of the (020) sample. Synthetic silica was also evaluated for comparison. The surface LIDT (17.3 J/cm2) of SBO after optical polishing is 4.3 times that of synthetic silica (4.0 J/cm2). In addition, the surface LIDT (24.1 J/cm2) of CARE-treated SBO is 6.0 times that of synthetic silica. This suggests that CARE-treated SBO crystals are a promising material for optical components in high-power DUV laser systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要