Boron-induced activation of Ru nanoparticles anchored on carbon nanotubes for the enhanced pH-independent hydrogen evolution reaction

Journal of Colloid and Interface Science(2022)

引用 17|浏览7
暂无评分
摘要
As a promising dopant, electron deficient B atom not only tunes the electronic structure of electrocatalysts for improving their intrinsic catalytic activities, but also combines with hydroxy radical as strong adsorption sites for accelerating the water dissociation during the hydrogen evolution reaction (HER). In this paper, we report an electrocatalyst based on boron-modified Ru anchored on carbon nanotubes (B-Ru@CNT) that shows impressive HER activity in acidic and alkaline media. The boron-rich closo-[B12H12]2- borane was selected as a moderately strong reductant for the in situ reduction of a Ru salt, which yielded B-doped Ru nanoparticles. The experimental and theoretical results indicate that the incorporation of B not only weakens the Ru-H bond and downshifts the d-bond centre of Ru from the Fermi level by reducing the electron density at Ru but also accelerates the water dissociation reaction by providing B sites, which strongly adsorb OH* intermediates, and nearby Ru sites, which act as sites for the adsorption of the H* intermediate, thus boosting the HER performance and enhancing the HER kinetics. As a result of the tuning of the electronic structure via B doping, B-Ru@CNT showed excellent HER performance, yielding overpotentials of 17 and 62 mV at a current density of 10 mA cm−2 in alkaline and acidic solutions, respectively. These results indicate that our synthetic method is a promising route to B-doped metallic Ru with enhanced pH-independent HER performance.
更多
查看译文
关键词
Boron doping,Ru nanoparticles,Closo-dodecaborate cluster,Hydrogen evolution reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要