谷歌浏览器插件
订阅小程序
在清言上使用

Enhancer networks revealed by correlated DNAse hypersensitivity states of enhancers

Nucleic Acids Research(2013)

引用 0|浏览9
暂无评分
摘要
Mammalian gene expression is often regulated by distal enhancers. However, little is known about higher order functional organization of enhancers. Using ∼100 K P300-bound regions as candidate enhancers, we investigated their correlated activity across 72 cell types based on DNAse hypersensitivity. We found widespread correlated activity between enhancers, which decreases with increasing inter-enhancer genomic distance. We found that correlated enhancers tend to share common transcription factor (TF) binding motifs, and several chromatin modification enzymes preferentially interact with these TFs. Presence of shared motifs in enhancer pairs can predict correlated activity with 73% accuracy. Also, genes near correlated enhancers exhibit correlated expression and share common function. Correlated enhancers tend to be spatially proximal. Interestingly, weak enhancers tend to correlate with significantly greater numbers of other enhancers relative to strong enhancers. Furthermore, strong/weak enhancers preferentially correlate with strong/weak enhancers, respectively. We constructed enhancer networks based on shared motif and correlated activity and show significant functional enrichment in their putative target gene clusters. Overall, our analyses show extensive correlated activity among enhancers and reveal clusters of enhancers whose activities are coordinately regulated by multiple potential mechanisms involving shared TF binding, chromatin modifying enzymes and 3D chromatin structure, which ultimately co-regulate functionally linked genes.
更多
查看译文
关键词
dnase hypersensitivity states,enhancer networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要