Local Structural Dynamics of Alpha-Synuclein Correlate with Aggregation in Different Physiological Conditions

bioRxiv (Cold Spring Harbor Laboratory)(2022)

引用 2|浏览9
暂无评分
摘要
In Parkinson’s disease and other synucleinopathies, the intrinsically disordered, presynaptic protein alpha-synuclein misfolds and aggregates. We hypothesise that the exposure of alpha-synuclein to different cellular environments, with different chemical compositions, pH and binding partners, alters its biological and pathological function by inducing changes in molecular conformation. Our custom instrumentation and software enable measurement of the amide hydrogen exchange rates of wild-type alpha-synuclein at amino acid resolution under physiological conditions, mimicking those in the extracellular, intracellular, and lysosomal compartments of cells. We characterised the aggregation kinetics and morphology of the resulting fibrils and correlate these with structural changes in the monomer. Our findings reveal that the C-terminal residues of alpha-synuclein are driving its nucleation and thus its aggregation. Furthermore, the entire NAC region and specific other residues strongly promoted elongation of fibrils. This provides new detail on our current understanding of the relationship between the local chemical environment and monomeric conformations of alpha-synuclein.### Competing Interest StatementThe authors have declared no competing interest.
更多
查看译文
关键词
Protein Misfolding,a-Synuclein
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要