Design of a Sub-6 GHz Dielectric Resonator Antenna with Novel Temperature-Stabilized (Sm1-xBix)NbO4 (x=0-0.15) Microwave Dielectric Ceramics

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 47|浏览17
暂无评分
摘要
Microwave dielectric ceramics exhibiting a low dielectric constant (epsilon(r)), high quality factor (Q x f), and thermal stability, specifically in an ultrawide temperature range (from -40 to +120 degrees C), have attracted much attention. In addition, the development of 5G communication has caused an urgent demand for electronic devices, such as dielectric resonant antennas. Hence, the feasibility of optimizing the dielectric properties of the SmNbO4 (SN) ceramics by substituting Bi3+ ions at the A site was studied. The permittivity principally hinges on the contribution of Sm/Bi-O to phonon absorption in the microwave range, while the reduced sintering temperature results in a smaller grain size and slightly lower Q x f value. The expanded and distorted crystal cell indicates that Bi3+ doping effectively regulates the temperature coefficient of resonant frequency (TCF) by adjusting the strains (causing the distorted monoclinic structure) of monoclinic fergusonite besides correlating with the permittivity. Moreover, a larger A-site radius facilitates the acquisition of near-zero TCF values. Notably, the (Sm0.875Bi0.125)NbO4 (SB0.125N) ceramic with epsilon(r) approximate to 21.9, Q x f approximate to 38 300 GHz (at similar to 8.0 GHz), and two different near-zero TCF values of -9.0 (from -40 to +60 degrees C) and -6.6 ppm/degrees C (from +60 to +120 degrees C), respectively, were obtained in the microwave band. A simultaneous increase in the phase transition temperature (T-c) and coefficients of thermal expansion (CTEs) by A-site substitution provides the possibility for promising thermal barrier coating (TBC) materials. Then, a cylindrical dielectric resonator antenna (CDRA) with a resonance at 4.86 GHz and bandwidth of 870 MHz was fabricated by the SB0.125N specimen. The exceptional performance shows that the SB0.125N material is a possible candidate for the sub-6 GHz antenna owing to the advantages of low loss and stable temperature.
更多
查看译文
关键词
microwave dielectric ceramics, SmNbO4, high-quality factor, thermally stable, sub-6 GHz dielectric antenna
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要