谷歌浏览器插件
订阅小程序
在清言上使用

Oleanolic Acid-Loaded Nanoparticles Attenuate Activation of Hepatic Stellate Cells Via Suppressing TGF-β1 and Oxidative Stress in PM2.5-exposed Hepatocytes.

Toxicology and applied pharmacology(2022)

引用 8|浏览12
暂无评分
摘要
Liver fibrosis has the potential to progress into liver cirrhosis, liver failure, and even death. Hepatic stellate cells (HSCs) activation play a central role in liver fibrosis, and persistently damaged hepatocytes secrete soluble factors that activate transdifferentiation of HSCs into myofibroblasts. Our previous studies indicated that fine particulate matter (PM2.5) can activate HSCs by stimulating hepatocytes to secrete TGF-β1. However, whether PM2.5 activates HSCs by regulating oxidative stress in hepatocytes remains uncertain. Oleanolic acid (OA) has been widely used in the clinic for hepatoprotection in Chinese medicine. In the present study, OA-loaded nanoparticles (OA-NP) with high solubility were used to attenuate the activation of HSCs induced by PM2.5-treated hepatocytes, and further studies were performed to explore the mechanism in which OA-NP plays a vital part. Our results showed that consistently PM2.5 treatment induced oxidative stress in hepatocytes. Moreover, the activation of HSCs induced by PM2.5-treated hepatocytes was reversed by antioxidant N-acetylcysteine treatment. Hence, PM2.5 may participate in the activation of HSCs by regulating oxidative stress in hepatocytes. Using a co-cultivation system, our results proved pretreatment with OA-NP significantly attenuates the activation of HSCs induced by PM2.5-exposed hepatocytes. In addition, the TGF-β1 expression and oxidative stress in hepatocytes with PM2.5 treated were reduced by the incubation with OA-NP. These observations demonstrated that OA-NP protects against the activation of HSCs by decreasing the TGF-β1 level and oxidative stress in PM2.5-exposed hepatocytes.
更多
查看译文
关键词
Oleanolic acid-loaded nanoparticles,PM2.5,Liver fibrosis,<p>Transforming growth factor-beta 1</p>,Oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要