Doppler boosting the stochastic gravitational wave background

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS(2022)

引用 14|浏览8
暂无评分
摘要
One of the guaranteed features of the stochastic gravitational wave background (SGWB) is the presence of Doppler anisotropies induced by the motion of the detector with respect to the rest frame of the SGWB source. We point out that kinematic effects can be amplified if the SGWB is characterised by large tilts in its spectrum as a function of frequency, or by sizeable intrinsic anisotropies. Hence we examine the possibility to use Doppler effects as complementary probes of the SGWB frequency profile. For this purpose we work in multipole space, and we study the effect of kinematic modulation and aberration on the GW energy density parameter and on its angular power spectrum. We develop a Fisher forecast analysis and we discuss prospects for constraining parameters controlling kinematically induced anisotropies with future detector networks. As a case study, we apply our framework to a background component with constant slope in frequency, potentially detectable by a network of future ground-based interferometers. For this specific example, we show that a measurement of kinematic anisotropies with a network of Einstein Telescope and Cosmic Explorer will allow us to constrain the spectral shape with a precision of about 16%. We also show that, if a reconstruction of the spectral shape is done via other methods, e.g. frequency binning, a study of kinematic anisotropies can allow one to constrain our peculiar velocity with respect to the CMB frame with a precision of 30%. Finally, we identify cosmological and astrophysical scenarios where kinematic effects are enhanced in frequency ranges probed by current and future GW experiments.
更多
查看译文
关键词
gravitational wave detectors, gravitational waves, theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要