Probing Anisotropies of the Stochastic Gravitational Wave Background with LISA

arxiv(2022)

引用 35|浏览16
暂无评分
摘要
We investigate the sensitivity of the Laser Interferometer Space Antenna (LISA) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We first discuss the main astrophysical and cosmological sources of SGWB which are characterized by anisotropies in the GW energy density, and we build a Signal-to-Noise estimator to quantify the sensitivity of LISA to different multipoles. We then perform a Fisher matrix analysis of the prospects of detectability of anisotropic features with LISA for individual multipoles, focusing on a SGWB with a power-law frequency profile. We compute the noise angular spectrum taking into account the specific scan strategy of the LISA detector. We analyze the case of the kinematic dipole and quadrupole generated by Doppler boosting an isotropic SGWB. We find that $\beta\, \Omega_{\rm GW}\sim 2\times 10^{-11}$ is required to observe a dipolar signal with LISA. The detector response to the quadrupole has a factor $\sim 10^3 \,\beta$ relative to that of the dipole. The characterization of the anisotropies, both from a theoretical perspective and from a map-making point of view, allows us to extract information that can be used to understand the origin of the SGWB, and to discriminate among distinct superimposed SGWB sources.
更多
查看译文
关键词
gravitational wave detectors,gravitational waves / sources,gravitational waves / theory,physics of the early universe
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要