谷歌浏览器插件
订阅小程序
在清言上使用

Ultralow Lattice Thermal Conductivity at Room Temperature in 2D KCuSe from First-Principles Calculations

Physical chemistry chemical physics/PCCP Physical chemistry chemical physics(2022)

引用 5|浏览12
暂无评分
摘要
Ultralow lattice thermal conductivity is crucial for achieving a high thermoelectric figure of merit for thermoelectric applications. In this work, using first-principles calculations and the phonon Boltzmann transport theory, we investigate the phonon thermal transport properties of 2D KCuSe. Our calculations indicate that the strong acoustic-optical coupling, the low-lying acoustic phonon modes and the strong lattice anharmonic effect with a large Grüneisen parameter and phase space volume result in an ultralow lattice thermal conductivity of 0.021 W m-1 K-1 at 300 K for monolayer KCuSe, which is lower than those of recently reported KAgSe (0.26 W m-1 K-1 at 300 K) and TlCuSe (0.44 W m-1 K-1 at 300 K). Importantly, although the Coulomb interactions and the tensile biaxial strain lead to the increase of lattice thermal conductivity due to the increasing relaxation time (0.056 and 0.28 W m-1 K-1 at 300 K without and with 6% tensile strain, respectively), it is still lower than those of most 2D thermoelectric materials. The advantages of being cheap, environmentally friendly and having low lattice thermal conductivity compared to the KAgSe and TlCuSe derivatives make KCuSe a promising candidate for thermoelectric applications, which will stimulate more efforts toward theoretical and experimental studies on this class of 2D ternary semiconductors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要