Acclimation of phenology relieves leaf longevity constraints in deciduous forests

biorxiv(2022)

引用 1|浏览13
暂无评分
摘要
Leaf phenology is key for regulating total growing season mass and energy fluxes. Long-term temporal trends towards earlier leaf unfolding are observed across Northern Hemisphere forests. Phenological dates also vary between years, whereby end-of-season (EOS) dates correlate positively with start-of-season (SOS) dates and negatively with growing season total net CO2 assimilation ( A net). These associations have been interpreted as the effect of a constrained leaf longevity or of premature carbon (C) sink saturation - with far-reaching consequences for long-term phenology projections under climate change and rising CO2. Here, we use multi-decadal ground and remote-sensing observations to show that the relationships between A net and EOS are opposite at the interannual and the decadal time scales. A decadal trend towards later EOS persists in parallel with a trend towards increasing A net - in spite of the negative A net-EOS relationship at the interannual scale. This indicates that acclimation of phenology has enabled plants to transcend a constrained leaf longevity or premature C sink saturation over the course of several decades, leading to a more effective use of available light and a sustained extension of the vegetation CO2 uptake season over time. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要