谷歌浏览器插件
订阅小程序
在清言上使用

Angular momentum transport in a contracting stellar radiative zone embedded in a large-scale magnetic field

ASTRONOMY & ASTROPHYSICS(2022)

引用 3|浏览7
暂无评分
摘要
Context. Some contracting or expanding stars are thought to host a large-scale magnetic field in their radiative interior. By interacting with the contraction-induced flows, such fields may significantly alter the rotational history of the star. They thus constitute a promising way to address the problem of angular momentum transport during the rapid phases of stellar evolution. Aims. In this work, we aim to study the interplay between flows and magnetic fields in a contracting radiative zone. Methods. We performed axisymmetric Boussinesq and anelastic numerical simulations in which a portion of the radiative zone was modelled by a rotating spherical layer, stably stratified and embedded in a large-scale (either dipolar or quadrupolar) magnetic field. This layer is subject to a mass-conserving radial velocity field mimicking contraction. The quasi-steady flows were studied in strongly or weakly stably stratified regimes relevant for pre-main sequence stars and for the cores of subgiant and red giant stars. The parametric study consists in varying the amplitude of the contraction velocity and of the initial magnetic field. The other parameters were fixed with the guidance of a previous study. Results. After an unsteady phase during which the toroidal field grew linearly and then back-reacted on the flow, a quasi-steady configuration was reached, characterised by the presence of two magnetically decoupled regions. In one of them, magnetic tension imposes solid-body rotation. In the other, called the dead zone, the main force balance in the angular momentum equation does not involve the Lorentz force and a differential rotation exists. In the strongly stably stratified regime, when the initial magnetic field is quadrupolar, a magnetorotational instability is found to develop in the dead zones. The large-scale structure is eventually destroyed and the differential rotation is able to build up in the whole radiative zone. In the weakly stably stratified regime, the instability is not observed in our simulations, but we argue that it may be present in stars. Conclusions. We propose a scenario that may account for the post-main sequence evolution of solar-like stars, in which quasi-solid rotation can be maintained by a large-scale magnetic field during a contraction timescale. Then, an axisymmetric instability would destroy this large-scale structure and this enables the differential rotation to set in. Such a contraction-driven instability could also be at the origin of the observed dichotomy between strongly and weakly magnetic intermediate-mass stars.
更多
查看译文
关键词
instabilities, magnetohydrodynamics (MHD), methods, numerical, stars, magnetic field, stars, rotation, stars, interiors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要