谷歌浏览器插件
订阅小程序
在清言上使用

Designing an Efficient and Recoverable Magnetic Nanocatalyst Based on Ca, Fe and Pectin for Biodiesel Production

Fuel(2022)

引用 13|浏览1
暂无评分
摘要
Magnetic catalysts containing Fe and Ca synthesized in the presence of pectin have demonstrated to be highly efficient in the transesterification reaction for biodiesel production. Catalysts were prepared by the co precipitation method under a N-2 atmosphere with Na2CO3 from a mixture of FeSO4, FeCl3, Ca(NO3)(2), and pectin followed by calcination at 550 C/6h. The influence of the Fe:Ca molar ratio in the catalytic activity on the transesterification reaction with methanol was evaluated in the presence or absence of pectin. The most efficient catalyst was prepared in the presence of pectin with a Fe:Ca molar ratio of 4.5:2 (FCP2), and the best experimental conditions were at 3 % wt catalyst, 14:1 of methanol: soybean oil molar ration and 7.5 h of reaction time, which resulted in a methyl ester yield of 96.3%. It was shown that the presence of the biopolymer in the synthesis enhances the catalytic activity of the material from 20% to 99% of biodiesel production. All materials were fully characterized by TEM, FTIR, TGA, BET, XRD and DC magnetometry. It was found that catalysts present high surface areas with a nanometer size (similar to 20 nm), giving rise to a superparamagnetic state with a magnetic saturation high enough for separation by means of a magnet. In contrast, catalysts prepared in the absence of pectin demonstrated poor performance in the transesterification reaction of biodiesel in the optimized experimental conditions. The magnetic properties and the biopolymer role are discussed.
更多
查看译文
关键词
Biodiesel,Transesterification,Methyl esters,Catalysts,Magnetic,Pectin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要