谷歌浏览器插件
订阅小程序
在清言上使用

Ranibizumab prevents Müller cell edema by decreasing VEGF-A in diabetic retinopathy

Research Square (Research Square)(2020)

引用 0|浏览11
暂无评分
摘要
Abstract Background: Diabetic macular edema (DME) is the most common cause of vision loss in patients with diabetic retinopathy. The efficacy of anti-VEGF therapy has been well demonstrated and become the standard of care in the management of DME. The present study is to explore the possible mechanism(s) of ranibizumab in protecting Müller cells from cellular edema in experimental diabetic retinopathy. Methods: Sprague-Dawley rats were rendered diabetes with intraperitoneal injection of streptozotocin. Intravitreal injection of ranibizumab was performed 8 weeks after diabetes onset. Four weeks later, the rats were killed and the retinas were harvested for examination. rMC-1 cells (rat Müller cell line) were treated with glyoxal for 24 hours, with or without ranibizumab. Cell viability was detected with CCK-8 assay. The expressions of inwardly rectifying K + channel 4.1 (Kir4.1), aquaporin 4 (AQP4), Dystrophin 71 (Dp71), vascular endothelial growth factor A (VEGF-A), glutamine synthetase (GS) and sodium-potassium-ATPase (Na + -K + -ATPase) were examined with Western blot. VEGF-A in the supernatant of cell culture was detected with ELISA. The intracellular potassium and sodium levels were detected with specific indicators. Results: Compared to the normal control, the protein expressions of Kir4.1, AQP4 and Dp71 were down-regulated significantly in diabetic rat retinas, which were prevented by ranibizumab. The above changes were recapitulated in vitro . As compared with the control, the intracellular potassium level in glyoxal-treated rMC-1 cells was increased, while the intracellular sodium level and Na + -K + -ATPase protein level remained unchanged. However, ranibizumab treatment increased Na + -K + -ATPase protein expression and decreased intracellular sodium, but not potassium level. Conclusion: Ranibizumab protected Müller cells from intracellular edema through up-regulation of Kir4.1, AQP4, and Dp71 by directly binding VEGF-A. It also increased the expression of Na + -K + -ATPase, contributing to reduction of the intracellular osmotic pressure.
更多
查看译文
关键词
diabetic retinopathy,müller cell edema,ranibizumab
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要