谷歌浏览器插件
订阅小程序
在清言上使用

Structural Determination of an Orphan Natural Product Using Microcrystal Electron Diffraction and Genome Mining

semanticscholar(2020)

引用 0|浏览6
暂无评分
摘要
More than 60% of pharmaceuticals are related to natural products (NPs), chemicals produced by living organisms. Hence, new methods that accelerate natural product discovery are poised to profoundly impact human health. Of the many challenges that remain in natural product discovery, none are as pervasive as structural elucidation, as determination of the molecular structure of a newly discovered natural product can take months, years, or in some cases be altogether unachievable. This challenge can be fueled by lack of sufficient material for spectroscopic analysis, or difficulties in sourcing the producing organism. Even in cases where the analyte is abundant, its physical properties, including molecular structure, can prevent unambiguous structural determination. Here we report the use of microcrystal electron diffraction (MicroED), an emerging cryogenic electron microscopy (CryoEM) technique, in combination with genome mining, to address these challenges. As proof-of-principle, we apply these techniques to fischerin (1), an orphan NP isolated more than 30 years ago, with potent cytotoxicity but ambiguous structural assignment. We utilize genome mining methods to reconstruct its biosynthetic pathway and highlight the sensitivity of MicroED through the precise determination of the solid-state structure of 1 from sub-micron thick crystals. This structural solution serves as a powerful demonstration of the synergy of MicroED and synthetic biology in NP discovery, technologies that when taken together will ultimately accelerate the rate at which new drugs are discovered.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要