谷歌浏览器插件
订阅小程序
在清言上使用

Production of novel Spike truncations in Chinese hamster ovary cells

bioRxiv(2021)

引用 0|浏览7
暂无评分
摘要
SARS-CoV-2 Spike is a key protein that mediates viral entry into cells and elicits antibody responses. Its importance in infection, diagnostics, and vaccinations has created a large demand for purified Spike for clinical and research applications. Spike is difficult to express, prompting modifications to the protein and expression platforms to improve yields. Alternatively, Spike receptor binding domain (RBD) is commonly expressed with higher titers, though it has lower sensitivity in serological assays. Here, we improve transient Spike expression in Chinese hamster ovary (CHO) cells. We demonstrate that Spike titers increase significantly over the expression period, maximizing at 14 mg/L at day 7. In comparison, RBD titers peak at 54 mg/L at day 3. Next, we develop 8 Spike truncations (T1-T8) in pursuit of a truncation with high expression and antibody binding. The truncations T1 and T4 express at 130 mg/L and 73 mg/L, respectively, which are higher than our RBD titers. Purified proteins were evaluated for binding to antibodies raised against full-length Spike. T1 has similar sensitivity as Spike against a monoclonal antibody and even outperforms Spike for a polyclonal antibody. These results suggest T1 is a promising Spike alternative for use in various applications. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要