谷歌浏览器插件
订阅小程序
在清言上使用

Decellularization with Triton X-100 Provides a Suitable Model for Human Kidney Bioengineering Using Human Mesenchymal Stem Cells

Life Sciences(2022)

引用 9|浏览9
暂无评分
摘要
Aims: Regeneration of discarded human kidneys has been considered as an ideal approach to overcome organ shortage for the end-stage renal diseases (ESRDs). The aim of this study was to develop an effective method for preparation of kidney scaffolds that retain the matrix structure required for proliferation and importantly, differentiation of human adipose-derived mesenchymal stem cells (hAd-MSCs) into renal cells.Main methods: We first compared two different methods using triton X-100 and sodium dodecyl sulfate (SDS) for human kidney decellularization; followed by characterization of the prepared human renal extracellular matrix (ECM) scaffolds. Then, hAd-MSCs were seeded on the scaffolds and cultured for up to 3 weeks. Next, viability, proliferation, and migration of seeded hAd-MSCs underwent histological and scanning electron microscopy (SEM) assessments. Moreover, differentiation of hAd-MSCs into kidney-specific cell types was examined using immunohistochemistry (IHC) staining and qRT-PCR.Key findings: Our results indicated that triton X-100 was a more effective detergent for decellularization of human kidneys compared with SDS. Moreover, attachment and proliferation of hAd-MSCs within the recellularized human kidney scaffolds, were confirmed. Seeded cells expressed epithelial and endothelial differentiation markers, and qRT-PCR results indicated increased expression of platelet and endothelial cell adhesion molecule 1 (PECAM-1), paired box 2 (PAX2), and E-cadherine (E-CDH) as markers of differentiation into epithelial and endothelial cells.Significance: These observations indicate the effectiveness of decellularization with triton X-100 to generate suitable human ECM renal scaffolds, which supported adhesion and proliferation of hAd-MSCs and could induce their differentiation towards a renal lineage.
更多
查看译文
关键词
Iran,Human kidney,Extracellular matrix,Decellularization,Recellularization,Mesenchymal stem cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要