谷歌浏览器插件
订阅小程序
在清言上使用

HSFs Drive Stress Type-Specific Transcription of Genes and Enhancers

biorxiv(2021)

引用 0|浏览7
暂无评分
摘要
Reprogramming of transcription is critical for the survival under cellular stress. Heat shock has provided an excellent model to investigate nascent transcription in stressed cells, but the molecular mechanisms orchestrating RNA synthesis during other types of stress are unknown. We utilized PRO-seq and ChIP-seq to study how Heat Shock Factors, HSF1 and HSF2, coordinate transcription at genes and enhancers upon oxidative stress and heat shock. We show that pause-release of RNA polymerase II (Pol II) is a universal mechanism regulating gene transcription in stressed cells, while enhancers are activated at the level of Pol II recruitment. Moreover, besides functioning as conventional promoter-binding transcription factors, HSF1 and HSF2 bind to stress-induced enhancers to trigger Pol II pause-release from poised gene promoters. Importantly, HSFs act at distinct genes and enhancers in a stress type-specific manner. HSF1 binds to many chaperone genes upon oxidative and heat stress but activates them only in heat-shocked cells. Under oxidative stress, HSF1 and HSF2 trans -activate genes independently of each other, demonstrating, for the first time, that HSF2 is a bona fide transcription factor. Taken together, we show that HSFs function as multi-stress-responsive factors that activate specific genes and enhancers when encountering changes in temperature and redox state.### Competing Interest StatementThe authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要