谷歌浏览器插件
订阅小程序
在清言上使用

A Mechanism for Carbon Depletion at Bondline of High-Frequency Electric-Resistance-Welded X70 Pipeline Steel

Metallurgical and materials transactions A, Physical metallurgy and materials science(2021)

引用 4|浏览4
暂无评分
摘要
The bondline of electric-resistance-welded (ERW) linepipe steel, often etched white (i.e., ferrite) in optical microscopy, is generally believed to be carbon depleted. The mechanism for the carbon depletion, however, is not fully understood by researchers. To this end, atom probe tomography (APT) was used to measure elemental segregation of the as-welded and post-weld heat-treated bondline regions of X70 linepipe welds. The thin vertical features at the bondline in the as-welded condition were identified as carbon-rich martensite-austenite (M-A) constituents, and the majority ferrite phase in the bondline was identified as carbon-depleted ferrite. Following the post-weld normalization, all alloying elements, except Nb and Mo, are homogenized across the bondline and heat-affected zone. The carbon depletion in the ERW bondline was accurately measured. A new mechanism for carbon depletion has been proposed using Scheil calculations of elemental partitioning during weld formation. Segregation of elements in the heat-affected zone was shown to follow the negligible partitioning local equilibrium (NPLE) kinetics for bainite transformation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要