谷歌浏览器插件
订阅小程序
在清言上使用

Strategy for Large-Scale Monolithic Perovskite/Silicon Tandem Solar Cell: A Review of Recent Progress

ECOMAT(2021)

引用 36|浏览8
暂无评分
摘要
For any solar cell technology to reach the final mass-production/commercialization stage, it must meet all technological, economic, and social criteria such as high efficiency, large-area scalability, long-term stability, price competitiveness, and environmental friendliness of constituent materials. Until now, various solar cell technologies have been proposed and investigated, but only crystalline silicon, CdTe, and CIGS technologies have overcome the threshold of mass-production/commercialization. Recently, a perovskite/silicon (PVK/Si) tandem solar cell technology with high efficiency of 29.1% has been reported, which exceeds the theoretical limit of single-junction solar cells as well as the efficiency of stand-alone silicon or perovskite solar cells. The International Technology Roadmap for Photovoltaics (ITRPV) predicts that silicon-based tandem solar cells will account for about 5% market share in 2029 and among various candidates, the combination of silicon and perovskite is the most likely scenario. Here, we classify and review the PVK/Si tandem solar cell technology in terms of homo- and hetero-junction silicon solar cells, the doping type of the bottom silicon cell, and the corresponding so-called normal and inverted structure of the top perovskite cell, along with mechanical and monolithic tandemization schemes. In particular, we review and discuss the recent advances in manufacturing top perovskite cells using solution and vacuum deposition technology for large-area scalability and specific issues of recombination layers and top transparent electrodes for large-area PVK/Si tandem solar cells, which are indispensable for the final commercialization of tandem solar cells.
更多
查看译文
关键词
large scale,monolithic,PVK/Si,tandem solar cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要