Chrome Extension
WeChat Mini Program
Use on ChatGLM

Interrogating the Haemodynamic Effects of Haemodialysis Arteriovenous Fistula on Cardiac Structure and Function.

Scientific reports(2021)SCI 3区

Institute of Cardiovascular and Medical Sciences | Department of Radiology | Renal & Transplant Unit

Cited 12|Views1
Abstract
Arteriovenous fistula (AVF) is the preferred type of vascular access for maintenance haemodialysis but it may contribute to maladaptive cardiovascular remodelling. We studied the effect of AVF creation on cardiac structure and function in patients with chronic kidney disease (CKD). In this prospective cohort study patients with CKD listed for first AVF creation underwent cardiac magnetic resonance (CMR) imaging at baseline and at 6 weeks. All participants had ultrasound measurements of fistula blood flow at 6 weeks. The primary outcome was the change in left ventricular (LV) mass. Secondary outcomes included changes in LV volumes, LV ejection fraction, cardiac output, LV global longitudinal strain and N-terminal-pro B-type natriuretic peptide (NT-proBNP). A total of 55 participants were enrolled, of whom 40 (mean age 59 years) had AVF creation and completed both scans. On the second CMR scan, a mean increase of 7.4 g (95% CI 1.1–13.7, p = 0.02) was observed in LV mass. Significant increases in LV end-diastolic volumes (p = 0.04) and cardiac output (p = 0.02) were also seen after AVF creation. No significant changes were observed in LV end-systolic volumes, LV ejection fraction, NT-proBNP and LV global longitudinal strain. In participants with fistula blood flows ≥ 600 mL/min (n = 22) the mean increase in LV mass was 15.5 g (95% CI 7.3–23.8) compared with a small decrease of 2.5 g (95% CI − 10.6 to 5.6) in participants with blood flows < 600 mL/min (n = 18). Creation of AVF for haemodialysis resulted in a significant increase of LV myocardial mass within weeks after surgery, which was proportional to the fistula flow.
More
Translated text
Key words
Cardiac hypertrophy,Haemodialysis,Science,Humanities and Social Sciences,multidisciplinary
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest