Bone-targeting Engineered Small Extracellular Vesicles Carrying Anti-Mir-6359-cgggagc Prevent Valproic Acid-Induced Bone Loss
Research of Environmental Sciences(2024)
Department of Orthopedics | Department of Clinical Laboratory | Division of Plastic Surgery | Medical Center of Trauma and War Injuries | Department of Plastic Surgery | Pingshan District People’s Hospital of Shenzhen
Abstract
The clinical role and underlying mechanisms of valproic acid (VPA) on bone homeostasis remain controversial. Herein, we confirmed that VPA treatment was associated with decreased bone mass and bone mineral density (BMD) in both patients and mice. This effect was attributed to VPA-induced elevation in osteoclast formation and activity. Through RNA-sequencing, we observed a significant rise in precursor miR-6359 expression in VPA-treated osteoclast precursors in vitro, and further, a marked upregulation of mature miR-6359 (miR-6359) in vivo was demonstrated using quantitative real-time PCR (qRT-PCR) and miR-6359 fluorescent in situ hybridization (miR-6359-FISH). Specifically, the miR-6359 was predominantly increased in osteoclast precursors and macrophages but not in neutrophils, T lymphocytes, monocytes and bone marrow-derived mesenchymal stem cells (BMSCs) following VPA stimulation, which influenced osteoclast differentiation and bone-resorptive activity. Additionally, VPA-induced miR-6359 enrichment in osteoclast precursors enhanced reactive oxygen species (ROS) production by silencing the SIRT3 protein expression, followed by activation of the MAPK signaling pathway, which enhanced osteoclast formation and activity, thereby accelerating bone loss. Currently, there are no medications that can effectively treat VPA-induced bone loss. Therefore, we constructed engineered small extracellular vesicles (E-sEVs) targeting osteoclast precursors in bone and naturally carrying anti-miR-6359 by introducing of EXOmotif (CGGGAGC) in the 3’-end of the anti-miR-6359 sequence. We confirmed that the E-sEVs exhibited decent bone/osteoclast precursor targeting and exerted protective therapeutic effects on VPA-induced bone loss, but not on ovariectomy (OVX) and glucocorticoid-induced osteoporotic models, deepening our understanding of the underlying mechanism and treatment strategies for VPA-induced bone loss.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper