Chrome Extension
WeChat Mini Program
Use on ChatGLM

Optimised Fractionation of Brewer’s Spent Grain for a Biorefinery Producing Sugars, Oligosaccharides, and Bioethanol

Processes(2021)

Cited 9|Views7
No score
Abstract
Brewer’s spent grain (BSG) is the main by-product of the beer brewing process. It has a huge potential as a feedstock for bio-based manufacturing processes to produce high-value bio-products, biofuels, and platform chemicals. For the valorisation of BSG in a biorefinery process, efficient fractionation and bio-conversion processes are required. The aim of our study was to develop a novel fractionation of BSG for the production of arabinose, arabino-xylooligomers, xylose, and bioethanol. A fractionation process including two-step acidic and enzymatic hydrolysis steps was investigated and optimised by a response surface methodology and a desirability function approach to fractionate the carbohydrate content of BSG. In the first acidic hydrolysis, high arabinose yield (76%) was achieved under the optimised conditions (90 °C, 1.85 w/w% sulphuric acid, 19.5 min) and an arabinose- and arabino-xylooligomer-rich supernatant was obtained. In the second acidic hydrolysis, the remaining xylan was solubilised (90% xylose yield) resulting in a xylose-rich hydrolysate. The last, enzymatic hydrolysis step resulted in a glucose-rich supernatant (46 g/L) under optimised conditions (15 w/w% solids loading, 0.04 g/g enzyme dosage). The glucose-rich fraction was successfully used for bioethanol production (72% ethanol yield by commercial baker’s yeast). The developed and optimised process offers an efficient way for the value-added utilisation of BSG. Based on the validated models, the amounts of the produced sugars, the composition of the sugar streams and solubilised oligo-saccharides are predictable and variable by changing the reaction conditions of the process.
More
Translated text
Key words
biorefinery,response surface methodology,dilute acid hydrolysis,enzymatic hydrolysis,lignocellulosic residue,arabino-xylooligosaccharide,arabinose,xylose,D-function approach,Saccharomyces cerevisiae
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined