谷歌浏览器插件
订阅小程序
在清言上使用

Active Terahertz Spin State and Optical Chirality in Liquid Crystal Chiral Metasurface

Physical review materials(2021)

引用 21|浏览12
暂无评分
摘要
Dynamic control of photonic spin state and chirality plays a vital role in various applications, such as polarization control, polarization-sensitive imaging, and biosensing. Here, we present a scheme for the flexible and dynamic manipulation of terahertz spin state conversion and optical chirality by combining two achiral structures: an asymmetric metasurface and a layer of anisotropic liquid crystal. The proposed asymmetric metasurface can realize the polarization conversion effect. For the circularly polarized incidence, it exhibits the asymmetric transmission of the spin-flipped states but no spin-locked optical chirality since its geometry is mirror symmetric along with the wave propagation. The introduction of the liquid crystal makes the composite metasurface not only exhibit the spin state conversion but also spin-locked chirality and spin-flipped chirality on account of breaking mirror symmetry, which realizes an electrically active terahertz chiral device. The experimental results show that the asymmetric transmission of the terahertz spin states can be dynamically manipulated, resulting in a large controllable range 83.8% to -30.7% of spin-locked circular dichroism at 0.76 THz and -98.2% to 44.7% of spin-flipped circular dichroism at 0.73 THz. This work paves the way for the development of terahertz meta devices capable of enabling active photonic spin state and chirality manipulation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要