Chrome Extension
WeChat Mini Program
Use on ChatGLM

Cross-Modal Retrieval Using Deep De-correlated Subspace Ranking Hashing

Advances in Space Research(2018)SCI 3区SCI 2区SCI 4区

Univ Cent Florida

Cited 5|Views409
Abstract
Cross-modal hashing has become a popular research topic in recent years due to the efficiency of storing and retrieving high-dimensional multimodal data represented by compact binary codes. While most cross-modal hash functions use binary space partitioning functions (e.g. the sign function), our method uses ranking-based hashing, which is based on numerically stable and scale-invariant rank correlation measures. In this paper, we propose a novel deep learning architecture called Deep De-correlated Subspace Ranking Hashing (DDSRH) that uses feature-ranking methods to determine the hash codes for the image and text modalities in a common hamming space. Specifically, DDSRH learns a set of de-correlated nonlinear subspaces on which to project the original features, so that the hash code can be determined by the relative ordering of projected feature values in a given optimized subspace. The network relies upon a pre-trained deep feature learning network for each modality, and a hashing network responsible for optimizing the hash codes based on the known similarity of the training image-text pairs. Our proposed method includes both architectural and mathematical techniques designed specifically for ranking-based hashing in order to achieve de-correlation between the bits, bit balancing, and quantization. Finally, through extensive experimental studies on two widely-used multimodal datasets, we show that the combination of these techniques can achieve state-of the-art performance on several benchmarks.
More
Translated text
Key words
Multimodal retrieval,cross-modal hashing,image and text retrieval
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Sariel Har Peled
2006

被引用1846 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined