谷歌浏览器插件
订阅小程序
在清言上使用

Effect of V Addition on Microstructure and Mechanical Properties in C-Mn-Si Steels after Quenching and Partitioning Processes

METALS(2021)

引用 3|浏览19
暂无评分
摘要
Three C-Si-Mn Q&P steels with different V addition after one-step and two-step quenching and partitioning (Q&P) processes were investigated by means of optical microstructure observation, X-ray diffraction (XRD) measurement, transmission electron microscopy (TEM) characterization and particle size distribution (PSD) analysis. The effect of V addition on strength and ductility of the steels was elucidated by comparative analysis on the microstructure and mechanical properties as functions of partitioning time and temperature. For one-step Q&P treatment, the mechanical properties were mainly controlled by the tempering behavior of martensite during partitioning. V addition was helpful to mitigate the deterioration of mechanical properties by precipitation strengthening and grain refinement strengthening. For two-step Q&P treatment, the satisfying plasticity was attributed to the transformation-induced plasticity (TRIP) effect of retained austenite maintaining the high work hardening rate at high strain regime. The higher volume fraction of retained austenite with high stability resulted from the refined microstructure and the promoted carbon partitioning for the steel with 0.16 wt% V addition. However, the carbon consumption due to the formation of VC carbides led to the strength reduction of tempered martensite.
更多
查看译文
关键词
V microalloyed Q&P steel,microstructure,mechanical properties,precipitate size distribution,work hardening rate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要