谷歌浏览器插件
订阅小程序
在清言上使用

Structural Basis of Blastomyces Endoglucanase-2 Adjuvancy in Anti-Fungal and -Viral Immunity

PLOS PATHOGENS(2021)

引用 5|浏览1
暂无评分
摘要
Author summary Fungal disease remains a challenging clinical and public health problem in part because there is no commercial vaccine available. The lack of suitable adjuvants is a critical barrier to developing safe and effective vaccines against fungal pathogens. Current adjuvants such as alum preferentially induce antibody responses which may be limited in mediating protection against fungi. Clinical observations and animal studies implicate cellular immunity as the essential component for the resolution of fungal infections. We have recently discovered an adjuvant that augments cell mediated immune responses and vaccine induced protection against fungi. Here, we identified the structural and mechanistic requirements by which this newly discovered adjuvant induces cell mediated immunity against fungi. As a proof of principle we also demonstrate that the adjuvant drives cellular immune responses against viruses such as influenza. We anticipate that our adjuvant can be used for vaccination with safe subunit vaccines against many microbial pathogens including viruses, intracellular bacteria, fungi and parasites that require cell mediated immune responses. The development of safe subunit vaccines requires adjuvants that augment immunogenicity of non-replicating protein-based antigens. Current vaccines against infectious diseases preferentially induce protective antibodies driven by adjuvants such as alum. However, the contribution of antibody to host defense is limited for certain classes of infectious diseases such as fungi, whereas animal studies and clinical observations implicate cellular immunity as an essential component of the resolution of fungal pathogens. Here, we decipher the structural bases of a newly identified glycoprotein ligand of Dectin-2 with potent adjuvancy, Blastomyces endoglucanase-2 (Bl-Eng2). We also pinpoint the developmental steps of antigen-specific CD4(+) and CD8(+) T responses augmented by Bl-Eng2 including expansion, differentiation and tissue residency. Dectin-2 ligation led to successful systemic and mucosal vaccination against invasive fungal infection and Influenza A infection, respectively. O-linked glycans on Bl-Eng2 applied at the skin and respiratory mucosa greatly augment vaccine subunit- induced protective immunity against lethal influenza and fungal pulmonary challenge.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要