A New Class of Penicillin-Binding Protein Inhibitors to Address Drug-Resistant Neisseria Gonorrhoeae
bioRxiv the preprint server for biology(2024)
Venatorx Pharmaceuticals | BioDuro-Sundia | Department of Biochemistry & Molecular Biology | Henry M. Jackson Foundation for the Advancement of Military Medicine | Uniformed Services University
Abstract
β-Lactams are the most widely used antibiotics for the treatment of bacterial infections because of their proven track record of safety and efficacy. However, susceptibility to β-lactam antibiotics is continually eroded by resistance mechanisms. Emerging multidrug-resistant (MDR) Neisseria gonorrhoeae strains possessing altered penA alleles (encoding PBP2) pose a global health emergency as they threaten the utility of ceftriaxone, the last remaining outpatient antibiotic. Here we disclose a novel benzoxaborinine-based penicillin-binding protein inhibitor series (boro-PBPi) that is envisioned to address penA-mediated resistance while offering protection against evolution and expansion of β-lactamases. Optimization of boro-PBPi led to the identification of compound 21 (VNRX-14079) that exhibits potent antibacterial activity against MDR N. gonorrhoeae achieved by high affinity binding to the PBP2 target. Boro-PBPi/PBP2 complex structures confirmed covalent interaction of the boron atom with Ser310 and the importance of the β3-β4 loop for improved affinity. 21 elicits bactericidal activity, a low frequency of resistance, a good safety profile, suitable pharmacokinetic properties, and in vivo efficacy in a murine infection model against ceftriaxone-resistant N. gonorrhoeae. 21 is a promising anti-gonorrhea agent poised for further advancement.
MoreTranslated text
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest