Trout and Char of Northern Europe
TROUT AND CHAR OF THE WORLD(2019)
Tech Univ Denmark | Norwegian Water Resources & Energy Directorate | Swedish Univ Agr Sci | Daugavpils Univ | Inland Fisheries Inst | Kronotsky Biosphere Reserve | Uppsala Univ | Norwegian Inst Nat Res | Nat Resources Inst Finland Luke | Tartu Univ | Klaipeda Univ | GEOMAR Helmholtz Ctr Ocean Res Kiel | State Res Inst Lake & River Fisherie | Nat Resources Inst
求助PDF
上传PDF
AI 理解论文
AI速读
AI 速读论文是AMiner 基于学术预训练模型对文献全文理解而抽取的论文重点信息,包括背景、方法、结果、结论、图表等重点内容,让你对论文概要一目了然。
样例
背景
重点内容
简介
方法
结果
相关工作
基金
重点内容
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
上传PDF即可生成速读
溯源树
样例

生成溯源树,研究论文发展脉络
相关论文
Journal of Fish Biology 2019
被引用121
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
Chat Paper
当前算力紧张,生成总结失败
重新请求