Chrome Extension
WeChat Mini Program
Use on ChatGLM

Random Telegraph Signal (Rts) In The Euclid Ir H2rgs

HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY VIII(2018)

Cited 3|Views11
No score
Abstract
Euclid is an ESA mission to map the geometry of the dark Universe with a planned launch date in 2021. Euclid is optimised for two primary cosmological probes, weak gravitational lensing and baryonic acoustic oscillations. They are implemented through two science instruments on-board Euclid, a visible imager (VIS) and a near-infrared photometer/spectrometer (NISP), which are being developed and built by the Euclid Consortium instrument development teams. The NISP instrument contains a large focal plane assembly of 16 Teledyne HgCdTe H2RG detectors with 2.3 mu m cut-off wavelength and SIDECAR readout electronics. The performance of the detector systems is critical for the science return of the mission and extended on-ground tests are being performed for characterisation and calibration purposes. Special attention is given also to effects even on the scale of individual pixels, which are difficult to model and calibrate, and to identify any possible impact on science performance. This paper discusses the known effect of random telegraph signal (RTS) in a follow-on study of test results from the Euclid NISP detector system demonstrator model [ 1], addressing open issues and focusing on an in-depth analysis of the RTS behaviour over the pixel population on the studied Euclid H2RGs.
More
Translated text
Key words
Euclid, RTS, RTN, H2RG, HgCdTe, NISP
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined