Structure-activity Mapping of the Peptide- and Force-Dependent Landscape of T-cell Activation

bioRxiv(2021)

引用 2|浏览2
暂无评分
摘要
Adaptive immunity relies on T lymphocytes that use αβ T-cell receptors (TCRs) to discriminate amongst peptides presented by MHC molecules (pMHCs). An enhanced ability to screen for pMHCs capable of inducing robust T-cell responses could have broad applications in diagnosing and treating immune diseases. T cell activation relies on biomechanical forces to initiate triggering of the TCR. Yet, most in vitro screening technologies for antigenic peptides test potential pMHCs for T cell binding without force and thus are often not predictive of activating peptides. Here, we present a technology that uses biomechanical force to initiate T cell triggering in high throughput. BATTLES (Biomechanically-Assisted T-cell Triggering for Large-scale Exogenous-pMHC Screening) displays candidate pMHCs on spectrally encoded ‘smart beads’ capable of applying physiological loads to T cells, facilitating exploration of the force- and sequence-dependent landscape of T-cell responses. BATTLES can be used to explore basic T-cell mechanobiology and T cell-based immunotherapies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要