Visible-Light-Assisted Photoelectrochemical Biosensing of Uric Acid Using Metal-Free Graphene Oxide Nanoribbons

NANOMATERIALS(2021)

引用 0|浏览2
暂无评分
摘要
In this study, we demonstrate the visible-light-assisted photoelectrochemical (PEC) biosensing of uric acid (UA) by using graphene oxide nanoribbons (GONRs) as PEC electrode materials. Specifically, GONRs with controlled properties were synthesized by the microwave-assisted exfoliation of multi-walled carbon nanotubes. For the detection of UA, GONRs were adopted to modify either a screen-printed carbon electrode (SPCE) or a glassy carbon electrode (GCE). Cyclic voltammetry analyses indicated that all Faradaic currents of UA oxidation on GONRs with different unzipping/exfoliating levels on SPCE increased by more than 20.0% under AM 1.5 irradiation. Among these, the GONRs synthesized under a microwave power of 200 W, namely GONR(200 W), exhibited the highest increase in Faradaic current. Notably, the GONR(200 W)/GCE electrodes revealed a remarkable elevation (similar to 40.0%) of the Faradaic current when irradiated by light-emitting diode (LED) light sources under an intensity of illumination of 80 mW/cm(2). Therefore, it is believed that our GONRs hold great potential for developing a novel platform for PEC biosensing.
更多
查看译文
关键词
GONR, MWCNT, uric acid, photoelectrochemical, LED
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要