谷歌浏览器插件
订阅小程序
在清言上使用

Study on the identification of resistance of rice blast based on near infrared spectroscopy

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy(2022)

引用 8|浏览16
暂无评分
摘要
Rice Blast is the most devastating rice disease which poses a serious threat to the safe production of rice. The most effective way to prevent rice blast is to cultivate the rice varieties that have resistance to the disease, however, traditional resistance testing requires professional personnel, a tedious process, long determination time and high cost. In order to quickly identify different resistant rice seeds which are difficult to distinguish with the naked eye, a rapid non-destructive identification method based on NearInfrared Spectroscopy (NIRS) was proposed. Four different types of resistant rice seeds (high resistance, high susceptibility, susceptibility and resistance) came from in HeiLongjiang province of China were selected as the research objects. A total of 240 spectral data (60 from each variety) were scanned by the NIR spectrometer. The BP neural network (BP), Support Vector Machines (SVM), Probabilistic Neural Network (PNN) models were established based on the original spectral data in the fullspectrum (11520-4000 cm(-1)). Among all, Raw-BP has the best identification accuracy which reaches 100% with an iteration time of 869 s. After extracting the feature wavelengths by successive projections algorithm (SPA) on the spectral data, Raw-SPA-BP, Raw-SPA-SVM and Raw-SPA-PNN models were established. The accuracy of these three models didn't improve. But the iteration time of the SPA-BP model was shortened to 791 s. Another group of BP, SVM, and PNN models were established after using different spectral pretreatment methods and the SPA feature extraction. After Multivariate Scatter Correction (MSC), the accuracy of the MSC-SPA-BP model was still 100% and the iteration time was shortened to 840 s, which is 1/30 of the time at which the original data model was formed. The accuracy of the MSC-SPA-PNN model increased from 60% to 90% and the accuracy of the MSC-SPA-SVM model increased from 60% to 85%. Based on the comparison analysis of the models mentioned above, a best neural network identification model of the MSC-SPA-BP with 513 inputs, 8 hidden layers and 4 outputs was established. Its classification accuracy reached 100% with an iteration time of 29 s, indicating that the MSCSPA-BP model can completely achieve identification of four different resistant rice seeds. Therefore, the proposed method of the BP neural network identification model based on NIRS can be fully applied to the non-destructive rapid identification of rice seeds. Meanwhile, it provides a reference for the rapid identification of other crop seeds. (C) 2021 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Near infrared spectrum,Rice resistance,Variety identification,BP neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要