谷歌浏览器插件
订阅小程序
在清言上使用

Metabolomics-based Screening Analysis of PPCPs in Water Pretreated with Five Different SPE Columns

Analytical methods(2021)

引用 6|浏览18
暂无评分
摘要
The selection of solid phase extraction (SPE) columns in the pretreatment process plays a decisive role in the screening and quantification of pharmaceutical and personal care products (PPCPs). As growing PPCPs have frequently been detected in the aquatic environment, it is a burdensome task through one-by-one recovery comparison to judge which column presents relatively ideal pretreatment results for PPCPs. In view of this, we developed a novel metabolomics-based screening method based on ultrahigh-performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) results to accurately, rapidly and comprehensively choose a suitable column from 5 different kinds to handle 64 PPCPs in two water environments (50 μg L-1/pH ≅ 7.0/pure water and 1 μg L-1/pH ≅ 7.0/reservoir water) through seeking 'biomarkers', for which multivariate and univariate analyses were adopted. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) play a crucial role in multivariate analysis, and the pairwise t-test and fold change judgement in univariate analysis. Each column group was fully separated from the other 4 groups in PCA and OPLS-DA plots, laying a foundation to distinguish 'biomarkers' between groups. The S-Plot, permutation and variable importance in projection (VIP) in OPLS-DA were employed to screen and identify 'biomarkers', which were further verified by a pairwise t-test and fold change judgement. Eventually, the 64 PPCPs as 'biomarkers' were divided into 5 groups, which correspond to 5 column groups, consistent with the findings of traditional PPCP recovery comparison, proving the validity of the metabolomics-based screening method. This novel method will exhibit greater superiority in choosing suitable SPE columns to handle a growing and larger number of PPCPs in water environments and beyond.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要