谷歌浏览器插件
订阅小程序
在清言上使用

Aquifer Characterization and Uncertainty in Multi‐Frequency Oscillatory Flow Tests: Approach and Insights

GROUNDWATER(2022)

引用 3|浏览5
暂无评分
摘要
Characterizing aquifer properties and their associated uncertainty remains a fundamental challenge in hydrogeology. Recent studies demonstrate the use of oscillatory flow interference testing to characterize effective aquifer flow properties. These characterization efforts relate the relative amplitude and phase of an observation signal with a single frequency component to aquifer diffusivity and transmissivity. Here, we present a generalized workflow that relates extracted Fourier coefficients for observation signals with single and multiple frequency components to aquifer flow properties and their associated uncertainty. Through synthetic analytical modeling we show that multi-frequency oscillatory flow interference testing adds information that improves inversion performance and decreases parameter uncertainty. We show increased observation signal length, sampling frequency, and pressure sensor accuracy all produce decreased parameter uncertainty. This work represents the first attempt we are aware of to quantify effective aquifer parameters and their associated uncertainty using multi-frequency oscillatory flow interference testing.
更多
查看译文
关键词
Uncertainty Quantification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要