Genes in human obesity loci are causal obesity genes in C. elegans

PLOS GENETICS(2021)

引用 13|浏览7
暂无评分
摘要
Obesity and its associated metabolic syndrome are a leading cause of morbidity and mortality in the United States. Given the disease's heavy burden on patients and the healthcare system, there has been increased interest in identifying pharmacological targets for the treatment and prevention of obesity. Towards this end, genome-wide association studies (GWAS) have identified hundreds of human genetic variants associated with obesity. The next challenge is to experimentally define which of these variants are causally linked to obesity, and could therefore become targets for the treatment or prevention of obesity. Here we employ high-throughput in vivo RNAi screening to test for causality 293 C. elegans orthologs of human obesity-candidate genes reported in GWAS. We RNAi screened these 293 genes in C. elegans subject to two different feeding regimens: (1) regular diet, and (2) high-fructose diet, which we developed and present here as an invertebrate model of diet-induced obesity (DIO). We report 14 genes that promote obesity and 3 genes that prevent DIO when silenced in C. elegans. Further, we show that knock-down of the 3 DIO genes not only prevents excessive fat accumulation in primary and ectopic fat depots but also improves the health and extends the lifespan of C. elegans overconsuming fructose. Importantly, the direction of the association between expression variants in these loci and obesity in mice and humans matches the phenotypic outcome of the loss-of-function of the C. elegans ortholog genes, supporting the notion that some of these genes would be causally linked to obesity across phylogeny. Therefore, in addition to defining causality for several genes so far merely correlated with obesity, this study demonstrates the value of model systems compatible with in vivo high-throughput genetic screening to causally link GWAS gene candidates to human diseases. Author summary Human GWAS have identified hundreds of genetic variants associated with human obesity. The genes being regulated by these variants at the protein or expression level represent potential anti-obesity targets. However, for the vast majority of these genes, it is unclear whether they cause obesity or are coincidentally associated with the disease. Here we use a high-throughput genetic screening strategy to test in vivo in Caenorhabditis elegans the potential causal role of human-obesity GWAS hits. Further, we combined the results of the genetic screen with analyses of mouse and human GWAS databases. As a result, we present 17 genes that promote or prevent C. elegans obesity, and the early onset of organismal deterioration and death associated with obesity. Further, the sign of the correlation between the expression levels of the human genes and their associated clinical traits matches, for the most part, the phenotypic effects of knocking down these genes in C. elegans, suggesting conserved causality and pharmacological potential for these genes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要