Towards Zero-Label Language Learning
CoRR(2021)
Abstract
This paper explores zero-label learning in Natural Language Processing (NLP), whereby no human-annotated data is used anywhere during training and models are trained purely on synthetic data. At the core of our framework is a novel approach for better leveraging the powerful pretrained language models. Specifically, inspired by the recent success of few-shot inference on GPT-3, we present a training data creation procedure named Unsupervised Data Generation (UDG), which leverages few-shot prompts to synthesize high-quality training data without real human annotations. Our method enables zero-label learning as we train task-specific models solely on the synthetic data, yet we achieve better or comparable results from strong baseline models trained on human-labeled data. Furthermore, when mixed with labeled data, our approach serves as a highly effective data augmentation procedure, achieving new state-of-the-art results on the SuperGLUE benchmark.
MoreTranslated text
Key words
Language Understanding,Language Modeling
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2018
被引用1248 | 浏览
2019
被引用2762 | 浏览
2019
被引用2577 | 浏览
2020
被引用31 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话