CUORE opens the door to tonne-scale cryogenics experiments

CUORE Collaboration,D. Q. Adams,C. Alduino, F. Alessandria, K. Alfonso,E. Andreotti,F. T. Avignone III,O. Azzolini,M. Balata,I. Bandac,T. I. Banks,G. Bari,M. Barucci,J. W. Beeman,F. Bellini,G. Benato, M. Beretta,A. Bersani,D. Biare,M. Biassoni, F. Bragazzi, A. Branca,C. Brofferio,A. Bryant, A. Buccheri,C. Bucci, C. Bulfon,A. Camacho,J. Camilleri,A. Caminata,A. Campani,L. Canonica,X. G. Cao,S. Capelli, M. Capodiferro,L. Cappelli, L. Cardani, M. Cariello,P. Carniti,M. Carrettoni,N. Casali, L. Cassina, E. Celi,R. Cereseto,G. Ceruti, A. Chiarini,D. Chiesa,N. Chott,M. Clemenza, D. Conventi,S. Copello,C. Cosmelli,O. Cremonesi, C. Crescentini,R. J. Creswick,J. S. Cushman,A. D'Addabbo,D. D'Aguanno,I. Dafinei,V. Datskov,C. J. Davis,F. Del Corso,S. Dell'Oro,M. M. Deninno,S. Di Domizio,V. Dompè,M. L. Di Vacri,L. Di Paolo,A. Drobizhev, L. Ejzak,R. Faccini,D. Q. Fang,G. Fantini,M. Faverzani,E. Ferri,F. Ferroni,E. Fiorini,M. A. Franceschi, S. J. Freedman,S. H. Fu,B. K. Fujikawa, R. Gaigher,S. Ghislandi,A. Giachero,L. Gironi,A. Giuliani,L. Gladstone,J. Goett,P. Gorla,C. Gotti, C. Guandalini, M. Guerzoni, M. Guetti,T. D. Gutierrez,E. E. Haller,K. Han,E. V. Hansen,K. M. Heeger,R. Hennings-Yeomans,K. P. Hickerson,R. G. Huang, H. Z. Huang,M. Iannone,L. Ioannucci,J. Johnston, R. Kadel,G. Keppel,L. Kogler,Yu. G. Kolomensky,A. Leder,C. Ligi,K. E. Lim,R. Liu,L. Ma, Y. G. Ma,C. Maiano, M. Maino,L. Marini,M. Martinez,C. Martinez Amaya,R. H. Maruyama,D. Mayer, R. Mazza,Y. Mei, N. Moggi,S. Morganti, P. J. Mosteiro,S. S. Nagorny,T. Napolitano,M. Nastasi,J. Nikkel,S. Nisi,C. Nones,E. B. Norman,V. Novati,A. Nucciotti,I. Nutini,T. O'Donnell,M. Olcese,E. Olivieri,F. Orio,D. Orlandi,J. L. Ouellet,S. Pagan,C. E. Pagliarone,L. Pagnanini,M. Pallavicini,V. Palmieri,L. Pattavina,M. Pavan,M. Pedretti, R. Pedrotta,A. Pelosi,M. Perego, G. Pessina,V. Pettinacci,G. Piperno,C. Pira, S. Pirro,S. Pozzi,E. Previtali,A. Puiu,S. Quitadamo, F. Reindl, F. Rimondi,L. Risegari, C. Rosenfeld,C. Rossi,C. Rusconi,M. Sakai,E. Sala,C. Salvioni,S. Sangiorgio,D. Santone,D. Schaeffer,B. Schmidt, J. Schmidt,N. D. Scielzo, V. Sharma,V. Singh, M. Sisti,A. R. Smith,D. Speller,F. Stivanello,P. T. Surukuchi,L. Taffarello, L. Tatananni, M. Tenconi,F. Terranova,M. Tessaro,C. Tomei,G. Ventura,K. J. Vetter,M. Vignati,S. L. Wagaarachchi,J. Wallig,B. S. Wang, H. W. Wang,B. Welliver,J. Wilson,K. Wilson,L. A. Winslow, T. Wise, L. Zanotti, C. Zarra,G. Q. Zhang,B. X. Zhu,S. Zimmermann,S. Zucchelli

Progress in Particle and Nuclear Physics(2022)

引用 18|浏览63
暂无评分
摘要
The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution – comparable to semiconductor detectors – and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose.
更多
查看译文
关键词
Cryogenic temperatures,Neutrinoless double beta decay,Dilution refrigerator,Ton-scale detector,Low temperature calorimeter,Rare event searches
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要