谷歌浏览器插件
订阅小程序
在清言上使用

Orbital Angular Momentum from Self-Assembled Concentric Nanoparticle Rings.

Advanced materials(2021)

引用 2|浏览17
暂无评分
摘要
Ring-shaped nanostructures can focus, filter, and manipulate electromagnetic waves, but are challenging to incorporate into devices using standard nanofabrication techniques. Directed self-assembly (DSA) of block copolymers (BCPs) on lithographically patterned templates has successfully been used to fabricate concentric rings and spirals as etching masks. However, this method is limited by BCP phase behavior and material selection. Here, a straightforward approach to generate ring-shaped nanoparticle assemblies in thin films of supramolecular nanocomposites is demonstrated. DSA is used to guide the formation of concentric rings with radii spanning 150-1150 nm and ring widths spanning 30-60 nm. When plasmonic nanoparticles are used, ring nanodevice arrays can be fabricated in one step, and the completed devices produce high-quality orbital angular momentum (OAM). Nanocomposite DSA simplifies and streamlines nanofabrication by producing metal structures without etching or deposition steps; it also introduces interparticle coupling as a new design axis. Detailed analysis of the nanoparticle ring assemblies confirms that the supramolecular system self-regulates the spatial distribution of its components, and thus exhibits a degree of flexibility absent in DSA of BCPs alone, where structures are determined by polymer-pattern incommensurability. The present studies also provide guidelines for developing self-regulating DSA as an alternative to incommensurability-driven methods.
更多
查看译文
关键词
directed self-assembly,orbital angular momentum,self-regulation,supramolecular nanocomposites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要