Contamination Of Antibiotics And Sul And Tet(M) Genes In Veterinary Wastewater, River, And Coastal Sea In Thailand

SCIENCE OF THE TOTAL ENVIRONMENT(2021)

引用 17|浏览8
暂无评分
摘要
Water systems in Southeast Asia accumulate antibiotics and antibiotic resistance genes (ARGs) from multiple origins, notably including human clinics and animal farms. To ascertain the fate of antibiotics and ARGs in natural water environments, we monitored the concentrations of these items in Thailand. Here, we show high concentrations of tetracyclines (72,156.9 ng/L) and lincomycin (23,968.0 ng/L) in pig farms, followed by nalidixic acid in city canals. The city canals and rivers contained diverse distributions of antibiotics and ARGs. Assessments of targeted ARGs, including sul1, sul2, sul3, and tet(M), showed that freshwater (pig farm wastewater, rivers, and canals) consistently contained these ARGs, but these genes were less abundant in seawater. Although sulfonamides were low concentrations (<170 ng/mL), sul1 and sul2 genes were abundant in freshwater (minimum 4.4 x 10(-3) -maximum 1.0 x 10(0) copies/16S), suggesting that sul genes have disseminated over a long period, despite cessation of use of this class of antibiotics. Ubiquitous distribution of sul genes in freshwater appeared to be independent of selection pressure. In contrast, water of the coastal sea in the monitored area was not contaminated by these antibiotics or ARGs. The density of Enterobacteriales was lower in seawater than in freshwater, suggesting that the number of ARG-possessing Enterobacteriales falls after entering seawater. From the pig farms, through rivers/canals, to the coastal sea, the occurrence of tetracyclines and tet(M) exhibited some correlation, although not a strong one. However, no correlations were found between concentrations of total antibiotics and ARGs, nor between sulfonamides and sul genes. This is the first comprehensive study showing Thai features of antibiotics and ARGs contaminations. The pig farm is hot spot of antibiotics and ARGs, and sul genes ubiquitously distribute in freshwater environments, which become less abundant in seawater. (C) 2021 The Authors. Published by Elsevier B.V.
更多
查看译文
关键词
Antibiotics, Resistance, Aquatic environment, Sea, Pig farm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要