谷歌浏览器插件
订阅小程序
在清言上使用

Structural and immunological characterization of an epitope within the PAN motif of ectodomain I in Babesia bovis apical membrane antigen 1 for vaccine development

PEERJ(2021)

引用 2|浏览4
暂无评分
摘要
Background: Bovine babesiosis caused by Babesia bovis (B. bovis) has had a significant effect on the mobility and mortality rates of the cattle industry worldwide. Live-attenuated vaccines are currently being used in many endemic countries, but their wide use has been limited for a number of reasons. Although recombinant vaccines have been proposed as an alternative to live vaccines, such vaccines are not commercially available to date. Apical membrane antigen-1 (AMA-1) is one of the leading candidates in the development of a vaccine against diseases caused by apicomplexan parasite species. In Plasmodium falciparum (P. falciparum) AMA-1 (PfAMA-1), several antibodies against epitopes in the plasminogen, apple, and nematode (PAN) motif of PfAMA-1 domain I significantly inhibited parasite growth. Therefore, the purpose of this study was to predict an epitope from the PAN motif of domain I in the B. bovis AMA-1 (BbAMA-1) using a combination of linear and conformational B-cell epitope prediction software. The selected epitope was then bioinformatically analyzed, synthesized as a peptide (sBbAMA-1), and then used to immunize a rabbit. Subsequently, in vitro growth- and the invasion-inhibitory effects of the rabbit antiserum were immunologically characterized. Results: Our results demonstrated that the predicted BbAMA-1 epitope was located on the surface-exposed a-helix of the PAN motif in domain I at the apex area between residues 181 and 230 with six polymorphic sites. Subsequently, sBbAMA-1 elicited antibodies capable of recognizing the native BbAMA-1 in immunoassays. Furthermore, anti-serum against sBbAMA-1 was immunologically evaluated for its growth- and invasion-inhibitory effects on B. bovis merozoites in vitro. Our results demonstrated that the rabbit anti-sBbAMA-1 serum at a dilution of 1:5 significantly inhibited (p < 0.05) the growth of B. bovis merozoites by approximately 50-70% on days 3 and 4 of cultivation, along with the invasion of merozoites by approximately 60% within 4 h of incubation when compared to the control groups. Conclusion: Our results indicate that the epitope predicted from the PAN motif of BbAMA-1 domain I is neutralization-sensitive and may serve as a target antigen for vaccine development against bovine babesiosis caused by B. bovis.
更多
查看译文
关键词
Apical membrane antigen 1,Babesia bovis,Invasion-inhibition,Growth-inhibition,Synthetic peptide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要