谷歌浏览器插件
订阅小程序
在清言上使用

Deficiency of Antioxidative Paraoxonase 2 (pon2) Leads to Increased Number of Phenotypic LT-HSCs and Disturbed Erythropoiesis.

Oxidative medicine and cellular longevity(2021)

引用 1|浏览11
暂无评分
摘要
BACKGROUND:Long-term hematopoietic stem cells (LT-HSCs) reside in bone marrow niches with tightly controlled reactive oxygen species (ROS) levels. ROS increase results into LT-HSC differentiation and stem cell exhaustion. Paraoxonase 2 (PON2) has been shown to be important for ROS control. OBJECTIVES:We investigate the effects of inactivation of the PON2 gene on hematopoietic cell differentiation and activity. METHODS AND RESULTS:In young mice with inactivated Pon2 gene (Pon2 -/-, <3 months), we observed an increase of LT-HSCs and a reduced frequency of progenitor cells. In competitive transplantations, young Pon2-/- BM outcompeted WT BM at early time points. ROS levels were significantly increased in Pon2-/- whole BM, but not in Pon2-/- LT-HSCs. In more differentiated stages of hematopoiesis, Pon2 deficiency led to a misbalanced erythropoiesis both in physiologic and stress conditions. In older mice (>9 months), Pon2 depletion caused an increase in LT-HSCs as well as increased levels of granulocyte/macrophage progenitors (GMPs) and myeloid skewing, indicating a premature aging phenotype. No significant changes in ROS levels in old Pon2-/- LT- and short-term (ST-) HSCs were observed, but a significant reduction of spontaneous apoptotic cell death was measured. RNA-seq analysis in Pon2 -/- LT-HSCs identified overrepresentation of genes involved in the C-X-C chemokine receptor type 4 (Cxcr4) signaling, suggesting compensatory mechanisms to overcome ROS-mediated accelerated aging in hematopoietic progenitor cells. CONCLUSIONS:In summary, our current data indicate that PON2 is involved in the regulation of HSC functions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要