谷歌浏览器插件
订阅小程序
在清言上使用

Leveraging Large-Scale Weakly Labeled Data for Semi-Supervised Mass Detection in Mammograms

2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021(2021)

引用 7|浏览46
暂无评分
关键词
large-scale weakly labeled data,semisupervised mass detection,mammograms,mammographic mass detection,computer-aided diagnosis system,mass detection model,fully supervised fashion,self-training framework,soft image-level labels,diagnosis reports,RoBERTa-based natural language processing model,fully labeled data,fully supervised model,pixel-level masks,entire weakly labeled data,image-level soft label,self-training fashion,current model output,soft labels,soft cross-entropy loss,soft focal loss,pixel-level classification loss,semisupervised framework,mass detection accuracy,supervised baseline,previous state-of-the-art semisupervised approaches
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要